
WHAT KIND OF UNCERTAINTY IS THAT? USING PERSONAL
PROBABILITY FOR EXPRESSING ONE’S THINKING ABOUT

LOGICAL AND MATHEMATICAL PROPOSITIONS *

What is essential for the future development of probability consider-
ations, as for the development of science in general, is that trained
minds play upon its problems freely and that those engaged in discuss-
ing them illustrate in their own procedure the characteristic temper of
scientific inquiry—to claim no infallibility and to exempt no proposed
solution of a problem from intense criticism. Such a policy has borne
precious fruit in the past, and it is reasonable to expect that it will
continue to do so.
—Ernest Nagel,Principles of the Theory of Probability, Concluding Remarks1

T ry to use probability to formalize your uncertainty about
logical or mathematical assertions. What is the challenge?

Concerning the normative theory of personal probability, in a
frank presentation titled Difficulties in the theory of personal probability,2

L. J. Savage writes,

The analysis should be careful not to prove too much; for some depar-
tures from theory are inevitable, and some even laudable. For example,
a person required to risk money on a remote digit of p would, in
order to comply fully with the theory, have to compute that digit,
though this would really be wasteful if the cost of computation were
more than the prize involved. For the postulates of the theory imply
that you should behave in accordance with the logical implication of
all that you know. Is it possible to improve the theory in this respect,
making allowance within it for the cost of thinking, or would that

* We thank Jessi Cisewski and Rafael Stern for their helpful comments with prior
drafts of this paper.

1 Ernest Nagel,Principles of the Theory of Probability(Chicago: University Press, 1939),
pp. 76–77.

2 This text is taken from a draft of Leonard J. Savage’s manuscript, Difficulties in the



entail paradox, as I am inclined to believe but unable to demon-
strate? If the remedy is not in changing the theory but rather in
the way in which we are to attempt to use it, clarification is still to
be desired.

But why does Savage assert that“a person required to risk money
on a remote digit of p





section ii , strategy (2) for responding to Savage’s challenge is to
relax the conditions that B is as large as a field of sets. That creates
some elbow room for having uncertainty about what is otherwise
incorporated as part of the mathematical background assumptions
of a measure space.

P is a (countably additive) probability over B used to represent
YOUR uncertainty. We express Savage’s challenge to YOU in rep-
resenting your uncertainty about logical/mathematical constants as
follows. In addition to the events that constitute the elements ofB ,
the received theory of mathematical probability introduces a classc
of (possibly bounded) random variablesX as (B -measurable) real-
valued functions from Wto Â. Denote by EP[ X ] the P-expected value
of the random variable X. Let IG be an indicator function for an
event G. That is,

IG(w) 5 1 if w Î G and IG(w) 5 0 if w Î Gc.

Then EP[ IG] 5 P(G). Thus, in the received theory, probability is an



values. Consider a problem in probability that relies on three familiar
bits of knowledge from high-school geometry.

The area of a circle with radius r equalspr 2.
The area of a square is the square of the length of its side.
The Pythagorean Theorem: Given a right triangle, with side lengths

a and b and hypotenuse length c, then a2 1 b2 5 c2.

Let Wbe the set of points interior to a circle C with radius r. A point
from



coherent probability assessment.9 With strategy (1), next we illus-
trate how to convert this “bug” into a “feature” that opens the
door to using commonplace numerical methods as a response to
Savage’s challenge.

i. strategy ( 1)

We extend Example 1 to illustrate strategy (1): Loosen the grip
of the Total Evidence Principle. Use a Statistician’s Stoogeto replace
the original uncertain quantity Xp6 with a different one, q, that
the Stoogeknows (but YOU do not know) is coextensive with
Xp6



YOU about the region S is that it belongs to the algebra B. Then
the Yi form an iid sequence of Bernoulli(q) variables, whereq is
the area(S)/2 p. As it happens, q 5 2/ p. But this identity is sup-
pressed in the following analysis, with which both YOU and the
Stoogeconcur.

YOU and the Stoogeknow that ∑n
i51Yi is Binomial( n,q). Let_

Yn 5∑n
i51Yi=n denote the sample average of theYi.

_
Yn is a sufficient

statisticfor q, that is, a summary of then draws Xi that preserves all
the relevant evidence in a coherent inference aboutq based on the
data of the n-many iid Bernoulli( q) draws.

The Stoogesamples with n 5 1016, obtains
_
Yn 5 0.63661977236,

and carries out ordinary Bayesian reasoning with YOU about the
Binomial parameter q using YOUR“prior ” for q. According to what
the Stoogetells YOU, q is an uncertain Bernoulli quantity of no spe-
cial origins. YOU tell the Stoogeyour “prior ” opinion about q. For con-
venience, suppose that YOU use a uniform conjugate Beta(1, 1)
“prior ” distribution for q, denoted here asP(q). So, the Stoogereports,
given these data, YOUR“posterior” probability is greater than .999,
that 0.63661971£ q £ 0.63661990. Then, since theStoogeknows that
q 5 2/ p, the Stoogereports for YOU that the probability is at least
.999 that the sixth digit of p is 2. Of course, in order for YOU to reach
this conclusion you have to suppress the information thatS is an
inscribed square within C, rather than some arbitrary geometric
region within the algebra of ruler-and-compass constructions. The
Stoogeneeds this particular information, of course, in order to deter-
mine the value of each Yi .àExample

This technique, strategy (1), generalizes to include the use of
many familiar numerical methods as a response to Savage’s ques-
tion: How do YOU express uncertainty about a mathematic93.6rl8mathema2.7(ow)-367.5(do)-370.9(Yr)0eu7uy iTJ
/F3 2.9(fo)82(av)-





For finitely many contracts YOUR outcome is the sum of the sepa-
rate contracts.

∑n
i¼1bi [X i (w)� P(Xi )]:

In de Finetti ’s theory, the state spaceW5 fwg is formed by taking all
the mathematical combinations of those random variablesc 5 fXg
that YOU have assessed with YOURprevisions. We illustrate this tech-
nique in Example 2, below.

Definition.YOUR Previsionsare collectively incoherentprovided that
there is a finite combination of acceptable contracts with uniformly
negative outcome—if there exists a finite setfbig ( i 51, � , n) and
e > 0 such that, for eachw Î W ,

∑n
i¼1bi [Xi (w)� P(Xi )] < �e:

With this choice of fbig the Gamblerhas created a sure loss for
YOU—a Dutch Book. Otherwise, if no such combination fbig exists,
YOUR previsions arecoherent.

Let c 5 fXj : j Î Jg be an arbitrary set of variables, defined onW.
What are the requirements that coherence imposes on YOU for
giving coherent previsions to each random quantity in the setc?
That is, suppose YOU provide previsions for each of the variables
X in a set c where each variableX is defined with respect to W,
that is, the function X: W→Â is well defined for each X. When
are these a coherent set of previsions?

De Finetti’s Theorem of Coherent Previsions:10

YOUR Previsionsare coherent if and only if there is a (finitely
additive) probability P(·) on W with YOUR Previsionsequal to their
P-expected values.

P(X ) 5 EP[ X].

This theorem yields the familiar result that, when all the variables
in c are indicator functions—when all of the initial gambles are
simple bets on events—YOUR previsions are immune to the Gambler
having a strategy for making a Book against you if and only if your
previsions are a (finitely additive) probability.

10 de Finetti, Probabilismo: Saggio critico sulla teoria della probabilità e sul valore della
scienza
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the intersection of two events each of which you have assessed with
well-defined previsions. In Example 2, YOU give determinate previ-
sions P(f3,6g) and P(f1,2,3g), but are not required by coherence
to assessP(f3g). Alas, however, this approach through de Finetti’s
Fundamental Theoremdoes not solve YOUR question of how to
depict uncertainty about mathematical/logical constants.àExample

Example 3.For convenience, label the four events inc: F1 5 f1g,
F2 5 f3,6g, F3 5 f1,2,3g, and F4 5 f1,2,4g. Consider the following
specific sentential proposition, H, about which we presume YOU
are unsure of its validity—until, that is, you calculate truth tables.

H : [( F2� [ F1� (F4� F3)]) → [( F2� F1) � (F2� F4)]]

Analogous to the variable Xp6, the sixth decimal digit in p, the
indicator variable IH is a constant: it takes the value 1 for each state
in W. 1 5 IW £ IH. So, by theFundamental Theorem, in order to be
coherent YOUR prevision must satisfyP( IH) 5 1. Assume that,
prior to a truth-table calculation, YOU are unsure about H. Alas,
de Finetti’s theory of coherent previsions leaves YOU no room
to express this uncertainty. The closure of coherent previsions
required by the linear spanof the random variables that YOU have
coherently assessed doesnot match the psychologicalclosure of your
reasoning process.

Here is the same problem viewed from another perspective.
Example 3 (continued).Garber (1983) suggests YOU consider the

sentential form of the problematic hypothesis as a way of relaxing
the structural requirements of logical omniscience.

H : [( F2� [ F1� (F4� F3)]) → [( F2� F1) � (F2� F4)]]

This produces the schema:

H�: [ P � (Q � (R � S))] → [( P � Q)� (P � R )]

Evidently H� is neither a tautology nor a contradiction. So, each
value 0 £ P(H) £ 1 is a coherent prevision, provided that we have



The same problem recurs when, instead of imposing the norms
merely of a sentential logic, as in Garber’s suggestion, we follow
Gaifman’s (2004) intriguing proposal for reasoning with limited
resources. Gaifman offers YOU a (possibly finite) collectionP of
sentencesover which you express your degrees of belief. As Gaifman
indicates, in his approach sentences are the formal stand-ins for
Fregeanthoughts—“senses of sentences,” as he puts it (2004, p. 102).
This allows YOU to hold different degrees of uncertainty about two
thoughtsprovided that they have different senses. In Gaifman’s pro-
gram, YOUR opinions about sentences inP are governed by a
restricted logic. He allows for a local algebraof sentences that are
provably equivalent in a restricted logic. Then YOUR assessments
for the elements of P might not respect logical equivalence, as
needed in order to escape the clutches of logical omniscience. Just
as with de Finetti’s rule of closure under the linear span of assessed
events, also in Gaifman’s system of alocal algebraYOU are not
required to assess arbitrary well-formed subformulas of those inP.

We are unsure just how Gaifman’s approach responds to Savage’s
challenge. First, as a practical matter, we do not understand what
YOUR previsions for such sentences entail when previsions are used
as betting rates. When YOU bet on a sentences (in a local algebra),
what are the payoffs associated with such a bet? That is, how does a
local algebrafix the payoffs when YOU bet ons with prevision P( s)? It
cannot be that the truth conditions for s determine the payoffs for
the bet. That way requires YOU to be logically omniscient if you
are coherent, of course.

Second, and more to the point of Savage’



mathematical propositions. Nor does YOUR performance match
the norms of a sentential logic, as per Garber’s proposal. Nor does
YOUR performance match the norms of a local algebra, as per
Gaifman’s proposal. What reason makes plausible the view that
YOUR thinking about a mathematical proposition, your actual
performance when judging the value of Xp6





the three elements of W. And let the following be three incoherent
prevision functions over c.

P1(wi) 5 P1( Ii ) 5 <0.5, 0.5, 0.5>, fori 5 1, 2, 3.
P2(wi) 5 P2( Ii ) 5 <0.6, 0.7, 0.2>, fori 5



reported in section 6 of our (2003), explains how to calculate a
prevision for a new variable without increasing YOUR existing rate
of incoherence.

Assume YOU assess previsions for each element of a (finite) par-
tition p 5 fh1, � , hmg, with valuesP(hi ) 5 pi , i 5 1, � , m. YOU
are asked for YOUR previsionP(Y) for a (p-measurable) variableY,
with Y(hi) 5 ci .

� Calculate a pseudo-expectation usingYOUR possibly incoherent
previsions overp: P(Y) 5 ∑i pici

� Then you will not increase YOUR Rate of Incoherenceextending your
previsions to include the new one for Y, P(Y) 5 ∑i pici

When YOU are coherent, YOUR rate of incoherence is 0. Then
pseudo-expectations are expectations, and the only way to extend
YOUR previsions for a new variable, while preserving YOUR cur-
rent 0-rate of incoherence, is to use the pseudo-expectation algo-
rithm. However, when YOU are incoherent, there are other options
for assessingP(Y) without increasing YOUR rate of incoherence.
But, without knowing how incoherent YOU are, still YOU can safely
use the pseudo-expectation algorithm and be assured that your rate
of incoherence does not increase. The pseudo-expectation algorithm
is robust!

One intriguing case of this result arises whenY is the variable
corresponding to a called-off(conditional) gamble. 14 Then using a
pseudo-expectation with respect to YOUR (possibly) incoherent
previsions for Y suggests how to extend the principle ofconfirma-
tional conditionalization15 to include incoherent conditional previ-
sions. When YOU hypothesize expanding yourcorpus of knowledge
to include the new evidence (X 5 x), YOUR possibly incoherent
previsions P(·) become P(· | X 5 x), as calculated according to
the Bayes algorithm for pseudo-expectations.

This leads to the following Corollary, which is an elementary
generalization of familiar results about the asymptotic behavior of
a coherent posterior probability function given a sequence of
identically, independently distributed ( iid ) variables.16

14 We discuss this in section 6 of Schervish, Seidenfeld, and Kadane,“Two Measures
of Incoherence,” Technical Report #660, Department of Statistics, Carnegie Mellon
University (1997).

15 See Levi,The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and
Chance(Cambridge: MIT, 1980).

16 See Savage,Foundations of Statistics, p. 141, Theorem 1, for the special case of
a finite parameter space, and Doob’s theorem, as reported by Schervish,Theory of
Statistics(New York, Springer-Verlag, 1995), T.7.78, p. 429, for the general version,
as used here.
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Corollary.Let �



previsions aboutXc. But how to match q against what we are think-
ing about Xc? What exactly is ourStoogereporting to us about q?

(2) Relax the structure of a measure space in order to accommodate
a more psychologically congenial closure condition on the set
of variables to be assessed (Hacking, 1967). What fits the bill?
De Finetti’s use of the linear span in place of an algebra of events


